On the stability of multicubic-quartic and multimixed cubic-quartic mappings

نویسندگان

چکیده

In this paper, we define the multicubic-quartic and multimixed cubic-quartic mappings characterize them. other words, unify system of functional equations defining a (resp., multicubic-quartic) mapping to single equation, namely, equation. We also show that under what conditions can be multicubic, multiquartic multicubic-quartic. Moreover, by using fixed point theorem, study generalized Hyers-Ulam stability in non-Archimedean normed spaces. As corollary, every cubicquartic some mild hyperstable. Lastly, present non-stable example for mappings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic-Quartic Functional Equation

and Applied Analysis 3 In 2008, Gordji et al. 17 provided the solution as well as the stability of a mixed type cubic-quartic functional equation. We only mention here the papers 19, 32, 33 concerning the stability of the mixed type functional equations. In this paper, we deal with the following general cubic-quartic functional equation: f ( x ky ) f ( x − ky) k2(f(x y) f(x − y)) 2 ( 1 − k2 ) f...

متن کامل

Intuitionistic fuzzy stability of a quadratic and quartic functional equation

In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.

متن کامل

Stability of a Quartic and Orthogonally Quartic Functional Equation

In this paper, the authors investigate the generalized Hyers-UlamAoki-Rassias stability of a quartic functional equation g(2x+ y + z) + g(2x+ y − z) + g(2x− y + z) + g(−2x+ y + z) + 16g(y) + 16g(z) = 8[g(x+ y) + g(x− y) + g(x+ z) + g(x− z)] + 2[g(y + z) + g(y − z)] + 32g(x). (1) The above equation (1) is modified and its Hyers-Ulam-Aoki-Rassias stability for the following quartic functional equ...

متن کامل

Reduction of Binary Cubic and Quartic Forms

A reduction theory is developed for binary forms (homogeneous polynomials) of degrees three and four with integer coefficients. The resulting coefficient bounds simplify and improve on those in the literature, particularly in the case of negative discriminant. Applications include systematic enumeration of cubic number fields, and 2-descent on elliptic curves defined over Q. Remarks are given c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2203031a